一. 题目
卡拉兹(Callatz)猜想:
对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下,需要多少步(砍几下)才能得到n=1?
输入格式:
每个测试输入包含1个测试用例,即给出自然数n的值。
输出格式:
输出从n计算到1需要的步数。
输入样例:
3
输出样例:
5
二. 思路
本题只要是有编程基础的人做出来都没有问题,关键是,什么方法更好一些呢?一开始的时候,我先判断n是否为奇偶数,如果是奇数,则乘三加一再砍掉一半,如果是偶数,直接砍掉一半,但是既然奇数和偶数都涉及到砍掉一半的操作,则不需要分别写一个n / 2,直接将这个操作合二为一即可
三. 答案
import java.util.Scanner; public class Main { public static void main(String[] args) { int count = 0; Scanner input = new Scanner(System.in); int n = input.nextInt(); while (n != 1) { if(n % 2 != 0) { n = n * 3 + 1; } n /= 2; count++; } System.out.println(count); } }
请登录之后再进行评论